活塞发动机增压技术(航空重油发动机技术难点)

admin

  活塞发动机增压是指将进入发动机汽缸的空气或混合气预先进行压缩或压缩后再加以冷却,以增大进入汽缸的空气或混合气的压力,提高进气密度,进而增加汽缸的进气量。增压器与供油系统的配合,使更多的燃料充分燃烧,达到了提高发动机动力性、提高比功率、改善燃料经济性、降低废气排放和噪声的目的。

  1、重油的燃料雾化技术。发动机做功,需要将燃料通过喷嘴喷成颗粒度非常细的雾状,才能与空气充分混合,达到良好的燃烧效果。雾化燃料与空气混合气的形成质量,对于动力性、经济性和排放性都有至关重要的作用。而重油比汽油的黏度高,低温流动性差。这造成重油的雾化效果要比汽油差,影响了燃烧效果,甚至导致发动机启动困难。实现重油的可靠雾化及高效的燃烧组织,成为航空重油活塞发动机的核心技术之一。

重油发动机无人机

  重油发动机无人机

  活塞发动机的重油雾化燃烧改进方式,现在流行采用电控燃油喷射系统:熟悉汽车的同学对这个词不陌生。对的,就是借鉴汽车工业的电喷技术,对航空活塞发动机进行改进设计。电喷的调节范围大,控制自由度和灵活度高于机械喷射。比如澳大利亚Orbital 公司的AADI(Air Assistant Direct Injection) 空气辅助喷射系统,采用一体化喷嘴,使用高压空气对燃油颗粒进行冲击,实现燃油的充分雾化。并通过调整辅助空气压力和夹入空气时间,可以得到不同雾束形状,适应不同的燃烧室形状和火花塞位置。

  说到这种方案,还有一个有趣的例子。这是美国NWUAV 公司,其在进行重油雾化电喷设计的过程中,碰到了诸多困难。最后的解决办法,说起来让人叫绝——他们想到了喷墨打印机,它就连很小的形状古怪的标点符号都能打印清楚。这喷墨控制喷流的绝活,能否用到喷油控制上呢?

  脑洞大开的NWUAV,果真买了喷墨打印机的首席大牛HP 公司有关喷墨技术的5 项专利,并在此基础上开发了微机电MEMS的电控燃油喷射系统。该系统有类似喷墨打印机的微通道喷射结构,直接控制喷射液滴数目,实现了喷油量的精确控制,其喷射雾化效果出奇的好,而且提高了燃料的经济性,同时还可以适用于汽油、柴油、航空煤油以及重油等多种燃料,同时功耗非常低,最大不超过10W,对于小型无人机动是非常不错的选择。什么是跨界创新,什么叫他山之石可以攻玉?

  燃烧效率的提高还要新型燃烧室结构。美国Deltahawk公司设计出了一种新型燃烧室,活塞顶部与气缸盖之间设计成上下近似对称的结构,同时采用180°喷射角,大大提高了重油的雾化效果,减少了碳烟颗粒的排放,提高了发动机的整体性能。相比新型燃料喷射系统,这种新型燃烧室基本上是发动机的重新设计了。

  2、活塞发动机的涡轮增压技术。航空活塞发动机,可分为二冲程和四冲程两类,其中小功率的两冲程发动机占大多数。

  二冲程航空活塞发动机,即活塞从上到下、从下到上两个行程的发动机,采用化油器、风冷、自然式吸气,具有结构简单,重量较轻,运动部件少维护方便,升功率密度大的优点,能够达到低空短航时无人机的需求。

  二冲程活塞发动机的做功原理,导致难以避免扫气过程(进、排气重叠期称为扫气期)的废气排出损失,导致油耗高,润滑油消耗量也大,经济性差。另外由于缸数和冷却的限制,进一步提高功率很难。废气涡轮增压的难度也较大。燃油/润滑油经济性差,就对无人机的长航时构成不利影响,这是二冲程活塞发动机的另外一个缺点。

  由于高空环境下空气稀薄,密度和温度下降,导致进入缸内的空气量减小,发动机充量系数下降,热负荷增加,排温升高,使得燃烧过程恶化,需要对其进行增压。而二冲程发动机无法有效增压,发动机的功率也不能有效提高,就难以提高发动机的巡航高度和实用升限,无人机的高原高空性能就会受到制约。这是另一方面的缺点。这两个缺点,造成了二冲程发动机难以满足中空长航时无人机需求。

  相比之下,四冲程航空活塞发动机,分为进气行程、压缩行程、作功行程和排气行程,燃油经济性比二冲程要好,功率也可以比二冲程航空活塞发动机功率更高。特别是得益于汽车工业技术的发展,小型高转速的废气涡轮增压器大量涌现,涡轮增压技术(和机械增压技术)也已经在四冲程航空活塞发动机得到应用,单级增压技术已经比较成熟。涡轮增压技术的使用,提高了发动机的输出功率,实现了高海拔发动机的功率恢复,从而使无人机的飞行速度和实用升限得以明显提高。

  研究表明,带一级增压的活塞发动机在5000米空中可以保持其最大功率持续工作,但超过8000米以上的高空运行仍无法满足进气需求量,造成动力输出不足甚至引发熄火。而二级增压则可以将这一高度提高到11000米(NASA研究的三级增压,甚至可以将航空活塞发动机的飞行高度提高到24000米)。但汽油机在增压压缩终了,混合气浓度和温度上升明显,易发生爆燃,同时汽油机转速范围宽,与增压器的匹配困难,因此高效率增压仍有一定困难。目前国外的主流航空四冲程活塞发动机,比如德国的LIMBACH-L2400ET,德国的TKDI600,奥地利的ROTAX914等,普遍具有涡轮增压功能,因此具备较高的可靠性和良好的高空性能,标定转速大约在3000r/min到6000r/min,标定功率34Kw-99kW之间。比如以色列的苍鹭无人机,采用的就是74.6kW的4冲程涡轮增压发动机,巡航高度7620米。

  更加典型的,是捕食者A采用的78.3kW的Rotax914型4缸4冲程涡轮一级增压活塞发动机,升限7925米。该发动机采用自然吸气时,在海拔3000m 时,其功率下降30%,4500米时下降40%,9000米时下降65%。而采用一级增压之后在海拔4500m 时,功率依然能达到平原的90%左右。

  3、由于重油燃点比汽油高,因此火花塞点火需要很高的能量,某型号研究燃油消耗率要高于压燃式20%左右。因此重油机的点火方式更适合采用压燃式,这就需要较高的压缩比才能压燃重油。

  4、轻量化航空重油活塞发动机的可靠性。航空活塞发动机体积小,对气动设计有利;重量轻,对提高功重比有利,这是它成为通用航空领域小型飞行器动力的重要优势因素。但是航空活塞发动机的燃料从航空汽油换成重油之后,再经过上述一、二亮点的优化设计,各种部件、附件增加,发动机的体积和重量有所增加,反过来弱化了活塞机的优势。既要降低重量和体积,又要保证在重油粗暴工作方式下发动机的运行正常,对于长航时无人机还要有充分的可靠性和耐久性。这些看似相互矛盾的需求,也正是航空重油活塞发动机的技术难点所在。在前面的燃料雾化和动力增压这些技术路线比较清晰的情况下,反而是可靠性这一点,有时倒成了航空重油活塞发动机最让人头痛的地方。

  从实际产品上看,国内国外的一些相关产品,在轻量化和耐久性的均衡性上也遇到了一些问题。比如,资料表明,德国著名活塞发动机厂商蒂勒特的名牌产品Centurion 1.7发动机,生产量达到1500台,但在耐久性和可靠性上就存在一些问题。生产初期依然存在价格昂贵,维修保养复杂和可靠性的问题——虽然大修间隔为1500小时,但300飞行小时就要更换齿轮箱。到了Centurion 2.0的发展型AE300,可靠性虽然有改善,但是轻量化做的不好——最大输出功率125kW,质量185公斤,功重比下降到0.6756。

  体积重量的轻量化+使用的可靠耐久性+运营的环保经济性,一举而众善备,说得容易,做到难啊。

标签: 活塞发动机 增压 航空 重油发动机

发表评论 (已有条评论)

  • 评论列表